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Solving the eddy current problem on a domain consisting of many thin laminates using a finite element approach requires a mesh
with a high number of elements to resolve each laminate, which in turn results in a computationally unfeasible amount of degrees
of freedom in the equation system. This work is based on a known multiscale ansatz which mitigates this problem by solving an
averaged problem on a coarse mesh which does not resolve the single laminates and superposing the solution with adequately chosen
ansatz functions. This known method is enhanced by the development of a local error estimator based on flux equilibration which
allows for adaptive mesh refinement. The ideas will be presented for the time-harmonic single component current vector potential
(SCCVP) in two dimensions.
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I. PROBLEM SETTING

CONSIDER A DOMAIN Ω consisting of a laminated
subdomain Ωm and a surrounding domain Ω0, see Fig.

1. The width of one laminate is d1 and the gaps between the
laminates are of width d2. The total period width in Ωm will
be denoted d = d1 + d2. In the applications the laminates
represent iron sheets separated by air gaps, surrounded by air.
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Fig. 1. Schematic of the domain Ω = Ωm ∪ Ω0.

The problem formulation for the SCCVP in two dimensions
is derived from the assumption of independence of the solution
from the z coordinate, i.e. T = (0, 0, u(x, y))T , correspond-
ing to the magnetic field intensity. In the weak form it is given
as: Find u ∈ H1(Ω), u = α on ∂Ω with a given Dirichlet
boundary condition α so that∫

ρ∇u∇v + iωµuv dΩ = 0 (1)

holds for every v ∈ H1(Ω), v = 0 on ∂Ω, where
ρ corresponds to the electric resistivity, µ to the magnetic
permeability and ω to the angular frequency.

II. THE MULTISSCALE ANSATZ

Following the techniques described in [1], the solution of
(1) is approximated using the ansatz

u = u0 + φ(x)u1, (2)

where the functions u0 and u1 are defined on a coarse mesh
which does not resolve the single laminates. The micro-shape
function φ is equal to 0 in air and a quadratic polynomial in
each laminate.

The ansatz (2) is used in (1) for the trial function and the
test function. This results in the coupled system: Find u0 ∈
H1(Ω), u0 = α on ∂Ω and u1 ∈ H1(ΩM ), u1 = 0 on the
top and bottom boundary of ΩM , so that

∫
ρ∇u0∇v0 + ρφ(∇u0∇v1 +∇u1∇v0)+

ρφ2xu1v1 + ρφ2∇u1∇v1 + iωµu0v0+

iωµφ2(u0v1 + u1v0) + iωµφ2u1v1 dΩ = 0

(3)

holds for every v0 ∈ H1(Ω), v0 = 0 on ∂Ω and every v1 ∈
H1(ΩM ), v1 = 0 on the top and bottom boundary of ΩM ,
where a bar indicates that the respective quantity is averaged
over one period and φx is the derivative of φ with respect to
the x coordinate.

III. THE ERROR ESTIMATOR

A. The Theorem of Prager and Synge

The error estimator is based on the theorem of Prager and
Synge, which states that if u is the solution of −κ∆u = f
and σ ∈ H(div) a solution of div σ + f = 0 satisfying
homogenous Neumann boundary conditions, then for every
v ∈ H1 satisfying the same Dirichlet boundary conditions as
u, there holds

‖(∇u−∇v)‖2κ+‖(∇u− κ−1σ)‖2κ= ‖(∇v − κ−1σ)‖2κ (4)

with the energy norm ‖.‖κ defined as ‖u‖2κ=
∫
κ∇u∇u dΩ.

The idea is to substitute the FEM solution uh for v in (4)
to get an upper bound for the error in the energy norm:



‖∇u−∇uh‖2κ≤ ‖∇uh − κ−1σ‖2κ. (5)

In [2] it is described how to construct a suitable function σ
efficiently by calculating local correctors to the numerical flux
κ∇uh. Using this σ, the right hand side of (5) can be evaluated
directly.

B. Application to the Multiscale Problem

Consider (3) only for test functions v1 = 0:∫
ρ∇u0∇v0 + ρφ∇u1∇v0+

iωµu0v0 + iωµφ2u1v0 dΩ = 0

(6)

If only u0 is considered an unknown, depending on a given
function u1, the expression (6) can be split into a bilinear form
on the FEM space of u0 and a linear right hand side. Using
Green’s formula in the term containing ∇u1∇v0 leads to∫

ρ∇u0∇v0 + iωµu0v0 dΩ =∫
ρφ∆u1v0 − iωµφ2u1v0 dΩ−

∑
T

∫
∂T

ρφ
du1
dn

v0 ds
(7)

where the sum iterates over all finite elements.
The error estimator can be naturally extended to allow for the

right hand side f to contain normal jump terms. To account for
the mass term, the setting of the theorem of Prager and Synge
has to be extended. The following relation can be shown:

Let u be the solution of −κ∆u + γu = f , then for every
v ∈ H1 satisfying the same Dirichlet boundary conditions as u
and every solution σ ∈ H(div) of div σ+f−γv = 0 satisfying
homogenous Neumann boundary conditions, the estimation

‖∇u−∇v‖2κ+‖u− v‖2γ≤ ‖(∇v − κ−1σ)‖2κ. (8)

holds.
The construction of the estimator can be modified to work

in this extended setting, again allowing for the construction of
a reliable local error estimator.

Similarly, u1 fulfills∫
ρφ2∇u1∇v1 + (ρφ2x + iωµφ2)u1v1 dΩ =

ρφ∆u0v1 − ρφ[∇u0 · n]v1 − iωµφ2u0v1 dΩ

(9)

for all suitable test functions v1, which is in the same setting
as the corresponding equation for u0.

IV. NUMERICAL EXAMPLE

For a simple numerical example a setting with 10 laminates
is chosen. The domain Ωm is given as a square with a side
width of 2mm. The fill factor is given as 0.9, i.e. d1 = 0.9d.
The electric resistivity ρ is given as ρ = 5 · 10−7 Ωm in iron
and, to ensure convergence of the numerical method, ρ = 5 Ωm
in air. The magnetic permeability is µ = µ0 in air and µ =
10000µ0 in iron. The frequency is 50Hz.

Fig. 2 shows a comparison of the curl of the reference
solution, i.e. the current density, and the curl of the multiscale
solution. For the sake of visibility, only the top left corner
of Ωm is shown. A fairly good agreement between the two
solutions can be observed. Note that the ansatz (2) introduces
a small additional error, mainly in the corners of the sheets,
which could be improved by choosing a higher order approach.

Fig. 2. Absolute value of curlu for the reference solution (left) and the
multiscale solution (right).

As a next step the error estimator developed above was used
to adaptively refine the mesh to improve the quality of the
multiscale solution. Fig. 3 compares the performance of this
approach with refining the mesh uniformly in each step. It can
be seen that the adaptive refinement gives clearly better results
for the same number of unknowns in the equation system.

Fig. 3. Error of u0 and u1 depending on the degrees of freedom.

V. CONCLUSION

A local error estimator allowing for adaptive mesh refine-
ment has been successfully developed for the case of the
SCCVP. Since in [2] a similar error estimator for functions in
H(curl) has been presented using an analogue to the theorem
of Prager and Synge for the magnetostatic setting, the ideas
presented here might be extendable to multiscale formulations
for the magnetic vector potential, which is a topic of future
work.
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